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6. A One Year Technical Research Summary:

-"Error-Trellis Syndrome Decoding for Convolutional Codes."

A new error-trellis syndrome decoding scheme for CCs is developed. It
is demonstrated that the real advantage of error-trellis decoding over
both Viterbi and sequential decoding of CCs is the reduction of the
number of states and transitions between any two frames.

-"CSI Architecture for Algebraic Syndrome Decoding of Dual-K
Convolutional Codes."

An algebraic syndrome decoder is developed to find the best estimated
message sequence for dual-K CCs without finding minimum-error paths
in an error-trellis diagram. The advantage of this algebraic syndrome
decoder over an error-trellis decoder of the dual-K CCs is that the
message sequence can be corrected without a necessity for storing a
large number of states or paths in a constraint length of the error trellis
diagram. Finally, a LSI chip is developed to realize this algorithm.

-'VLSI Design of a Pipeline Algebraic Syndrome Decoder."

A new VLSI architecture is developed for the Algebraic Syndrome
decoder. The advantage of this new architecture is that a substantial
reduction in the number of transistors is accomplished.

-"Searching High-Rate Systematic Optimum Distance Convolutional El
Codes." 0

Some high-rate systematic optimum distance convolutional codes are
being searched with rates up to 7/8 and of constraint length up to 15.
These codes can be efficiently decoded using error-trellis syndrome
decoding. Codes
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-'Decoder Performance Simulation."

Decoder performance simulation is accomplished both for error-trellis
decoding of convolutional codes and for algebraic syndrome decoding of
dual-K convolutional codes.

7. Published Papers and Abstracts:

-I. S. Reed and T. K. Truong, "Sequential Syndrome Decoding Techniques
for Convolutional Codes," submitted to lEE Proceedings, pt. E.

Abstract - This paper reviews previous studies (Refs. 1 and
2) of the algebraic structure of convolutional codes and
extends those studies to apply to sequential syndrome
decoding. These concepts are then used to realize by example
actual sequential decoding, using the stack algorithm.

-J. F. V'*ang, I. S. Reed, T. K. Truong, J. Sun and J. Y. Lee, "LSI Architecture
for Algebraic Syndrome Decoding of Dual-K Convolutional Codes,"
submitted to lEE Proceedings, pt. E.

',

Abstract - In this paper, algebraic syndrome decoders are
developed which extend the early syndrome decoders of 4.

certain convolutional codes such as the Wyner-Ash code.
Specifically syndrome decoders are designed to decode both
the rate 1/2 and 1/3, dual-k, nonsysternatic convolutional
codes (CCs). Also the LSI architectures of these decoders are
presented. Further, it is demonstrated that such decoders can
be realized readily on a single chip with CMOS technology.

The advantage of this algebraic syndrome decoder over
error-trellis decoding of dual-k CCs is that the message
sequence can be corrected without the necessity for storing a
number of states or paths in a constraint length of the error
trellis diagram.

-J. M. Jensen and I. S. Reed, "Bounded Distance Coset Decoding of
Convolutional Codes," lEE Proceedings, vol. 133, pt. F, no. 5, August 1986.

Abstract - This paper presents a maximum likelihood
consistent bounded distance decoding algorithm for
convolutional codes. The algorithm correctly decodes all error 0

sequences which fall within the error correcting sphere. A
class of codes is defined, in which the decoder exploits the
fact that only certain error sequences need to be corrected.
For these codes the decoding is based on a reduced encoder
state diagram. Thus only a subset of the trellis or tree has to
be searched in order to find the error pattern. An exact
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characterization of the reduced state diagram is given in this
paper along with an example.

-H. M. Shao, T. K. Truong, I. S. Hsu, L. J. Deutsch and I. S. Reed, "A Single

Chip VLSI Reed-Solomon Decoder," Proc. Int'l. Conf. on Acoustics,
Speech and Signal Processing, Tokyo, Japan, April 7-11, 1986.

Abstract - A new VLSI design of a pipeline Reed-Solomon
decoder is presented. The transform decoding technique used
in a previous design is replaced by a simple time domain
algorithm. A new architecture which realizes such algorithm
permits efficient pipeline processing with a minimum of
circuits. A systolic array is also developed to perform erasure
corrections in the new design. A modified form of Euclid's

algorithm is developed with a new architecture which
maintains a real-time throughput rate with less transistors.
Such improvements result in both an enhanced capability and
significant reduction in silicon area, thereby making it possible
to build a pipeline (255,223) RS decoder on a single VLSI chip.

-J. F. Wang, I. S. Reed, T. K. Truong and J. Sun, "Algebraic Syndrome
Decoding of Dual-K Convolutional Codes," to be submitted for
publication soon.

In this paper, algebraic syndrome decoders are developed
which extend the early syndrome decoders of high rate
convolutional codes such as the Wyner-Ash code. In this
paper, syndrome decoders are designed to decode the rate 1/n
dual-k nonsystematic convolutional codes. The advantage of
the algebraic syndrome decoders over error-trellis decoding of
dual-k convolutional codes is that the message sequence can
be corrected without the necessity of storing a large number
of states or paths in a constraint length of the error trellis
diagrams.

-I. S. Reed, I. S. Hsu, J. M. Jensen and T. K. Truong, 'The VLSI Design of
an Error-Trellis Syndrome Decoding for Certain Convolutional Codes,"
IEEE Trans. on Computers, vol. C-35, no. 9, pp. 781-789, September 1986.

A recursive algorithm using the error-trellis decoding
technique is developed to decode certain convolutional codes,
such as dual-k convolutional code. It is demonstrated that
such a decoder can be realized readily on a single chip with
NMOS technology.
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ABSTRACT

In this report, algebraic syndrome decoders are developed which extend the early syndrome

decoders of certain convolutional codes such as the Wyner-Ash code. Specifically syndrome decoders

are designed to decode both the rate 1/2 and 1/3, dual-k, nonsystematic convolutional codes (CCs).

Also the LSI architectures of these decoders are presented. Further it is demonstrated that such

decoders can be realized readily on a single chip with CMOS technology.

The advantage of this algebraic syndrome decoder over error-trellis decoding of dual-k CCs is

that the message sequence can be corrected without the necessity for storing a number of states or

paths in a constraint length of the error trellis diagram.

J'
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I. INTRODUCTION

Recently the authors [1,2,3] developed a new error-trellis syndrome decoding scheme for CCs.

This method involved finding minimum-error paths in an error-trellis diagram. It was shown [1,2,3]

that the computation of the error trellis could be accomplished by finding the solution of a syndrome

equation explicitly in terms of the actual error sequences. The real advantage of error-trellis decoding

over Viterbi coding-trellis decoding of CCs is the reduction of the number of states and transitions

between any two frames.

It is shown (e.g., see [41) that a simple logic design for a syndrome decoder can be found for a

rate 3/4, one-error-correcting systematic Wyner-Ash code. In this paper, it is shown that these early

syndrome decoders such as that used for the Wyner-Ash code can be extended to decode rate l/n,

dual-k CCs for n = 2,3. It is well known, see [5], that a rate l/n dual-k CCs is capable of correcting

only t errors in two codeword frames where t = n-I. From this fact, it is shown here that an alge-

braic syndrome decoder can be developed to find the best estimated message sequence for dual-k

CCs without finding minimum-error paths in an error-trellis diagram. In other words, if no more than

t symbol errors occur in two codeword frames, an algebraic syndrome decoder can be developed

which recursively determines the best next corrected message symbol i from only the current best

estimated symbol j-j and the received sequence at time frames i and i+l.

Next, an LSI architecture is developed to realize these new algebraic syndrome decoders for both

rate 1/2 and 1/2, dual-3 CCs. The designs of these decoders are regular, simple and therefore naturally

suitable for LSI implementation.

H. PROPERTIES OF CONVOLUTIONAL CODE

In order to systematically develop an algebraic syndrome decoder, certain properties of a convo-

lutional code are needed.

..........-. ' -""
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First let the information of message sequence, the input to the CC, be represented by

x(D) = [xl(D),x 2(D) xt(D)], (Ia)

where

xy(D) = xjiD'" 1 5 j S k (lb)

i-O

are elements in F [D ], the ring of polynomials in the unit delay operator D over F = GF (q), a Galois

field, with q, a power of a prime integer. Vector x(D) is a generating function in D of the input mes-

sage sequence x=[x0, x,, • , where xE = [xjl. xj] is a vector belonging to VF(k), the k-

dimensional vector space over F. x(D) is sometimes called a D-transform of the message or informa-

tion sequence x. The k component vector y in x is called the information frame at stage or frame

time j.

In a similar manner, the output sequence is

y(D) = [y1 (D) ...... . ..(D)], (2)

where yi (D) E F ID 1< i < n. Vector y (D) is the D-transform of output coded sequence

Y = [y0 .,y, , where y= [j1 ... Iy)] belongs to V,(F). The n-vectoryZ is called the j/

codeword frame of code sequence y.

The information and code sequence of an (n ,k) convolutional code are linearly related by a

k x n, rank k, generator matrix G (D) of polynomial elements in F [D], as follows:

y(D) = x(D).G(D). (3)

The maximum degree m of the polynomial elements of G (D) in D is called the memory, and the con-

straint length L is defined as L = m+l.

The free distance of a CC is defined by

",e' "e "; ," e ,'". [.~w .,,.Y , ..7.. .., %.. . .., . .. ., .. .,,'e. " .. . ,'.....',, i.'_." , " " "' "."'.{. , " • _ .". " "% -', ','', "" S .
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drfi,= Min WH(y(D)), (4)

where WH(y (D)) is the cumulative Hamming weight of the coefficients Y, of DI for all j _ 0, where

yj is the j1 h codeword frame. Note that the computation of drrc requires at least L codeword frames

for all codes of practical interest.

To avoid catastrophic error propagation, G (D) is assumed to be in a format of a basic encoder

[6]. The Smith normal form of a basic encoder [21 is

G (D)= A (D)ik,OIB (D), (5)

where A (D) and B (D) are, respectively, k x k and n x n invertible matrices over F [D ] and Ik is a

k x k identify matrix.

In Eq. (5), let matrix B [D ] be partitioned as

B() B2(D)

where BI(D) consists of the first k rows of B(D) and B2(D) consists of the last n-k rows of B(D).

Similarly, let

B (D)- = [ '(D ),2(D )1,

where B-(D) consists of the first k columns of B (D)- and B2 (D) consists of the last n -k columns of

B(D)-. Since B(D)B(D)-' = I, the following identities evidently hold:

BI(D).BI(D) = Ik, B (D).B2(D) = 0

B 2(D)'Bi(D) = 0, B 2D )'B 2(D) = 1,

A parity-check matrix H(D) is defined to be an (n-k) x n matrix of rank (n-k). satisfying

G (D)-HT(D) = 0, (7)

-..
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From Eqs. (5), (6), and (7), it is seen next that

H(D) = B 2 T(D) (8)

has the properties of a parity-check matrix H (D) associated with G (D).

By Eq. (3), the CC generated by G (D) is the set

C = {.y(D ) = [y (D ) .. .y.,(D)] ly(D ) =x(O )G(D)}. (9) :

It is now shown also that

T"

C ={y(D)= [y(D), .... y,(D)lIy(D)HT(D) 01, (10)

where H(D) is given in Eq. (8). To see this, denote the right side of Eq. (10) by CH. Clearly an ele-

ment of C, as given in Eq. (9), belongs to Cy and hence C Q CH.

Next suppose y1(D) is an element of CH, i.e. by Eqs. (8) and (10),

y1(D)HT(D) = y1(D)B 2(D) = 0.

But, by definition, B2(D) consists of the last (n-k) columns of B-'(D), so that

92(D)=B -(D).[0,k (11)

where "0" denotes a block of k rows of zeroes and 1n-k is the (n-k) row identity matrx. Thus.

v (D) satisfies the equation

yI(D)B-'(D) [I2_1]=0.

The most general solution of this equation for y 1(D )B-(D) is

yi(D)B-'(D) = [rt(D) .... Tk(D),O " 0]= t(D),0,

where c,(D) for 1 S j _ k can be chosen to be any arbitrary elements of F[D1. Solving for yj(D)

oE'

*8"

". " . . '. . , .' ... -"-.. _.- " , - - " . - . " .- .. ' " .. .- , -. ' ' . ... . . . ..''. . . ..".i. '" ." ,
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yields, finally, by Eq. (5),

(D ) = _(D)[,tk,0]B(D) =(D)A- (D)G (D),

which belongs to C, as given in Eq. (9). Thus CH c C and Eq. (10) is proved.

The fact that the CCs given by the set C in Eq. (9) can be characterized by Eq. (10) is used in

the following section to find the coset of solutions to the syndrome equation. 4

m. METHOD OF ALGEBRAIC SYNDROME DECODING

Let y(D) in Eq. (3) be transmitted and z(D) be received. Then,

z(D) = y(D) + e(D), (12)

where e(D) is the D-transform of the error sequence. By Eqs. (12) and (7), the syndrome of the

received sequence is

s(D) = z(D)'HT(D) = [y(D) + e(D)I'HT(D)

=e(D).H (D), (13)

or its equivalent,

(e(D) - z(D ))HT(D ) = 0, (14)

for all solutions e (D).

By Eqs. (10) and (9), the term (e(D) -z(D)) in Eq. (14) must be some code sequence

v(D )G (D). Hence, the most general solution of the syndrome equation, Eq. (14), is

e(D) = z(D) + v(D)G(D). (15)

where v(D) is the D-transform of an arbitrary message-like sequence v = .. .v, ] of k-

vectors vj E vk(F).
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Equation (15) shows that the most general solution of the syndrome equation, Eq. (13), for e(D)

is the coset

C, = {.(D) -= z__(D) + v(D)G(D)Iv(D) = [v(D)..vk(D)]}

of code C, defined by either Eq. (9) or Eq. (10). A minimization of the Hamming weights over all

elements of coset C, yields the standard minimum-error solution for message v(D). Efficient methods

for achieving this minimization include the Viterbi algorithm and all sequential decoding methods for

convolutional codes.

The difficulty with the standard decoding methods of CCs, i.e., Viterbi or sequential decoding, is

the need to consider a sometimes prohibitively large number of states and paths in the decoding trellis.

Such minimum-weight, path-finding decoding method does not take the advantage of the limited error-

correcting capability which one might expect could reduce complexity of the decoder. It is shown in

the next section that such reduced complexity is possible by using Eq. (15) to systematically develop

algebraic syndrome decoders.

IV. ALGEBRAIC DECODING OF DUAL-K CCs

Dual-k convolutional codes are of rate 1in of memory m = 1, and with symbols in the finite or

Galois field GF(2k) (see Odenwalder's paper [5]). The generating matrix G has the following form,

namely.

Go G

G= . (I6a)

where Go = [1,1,1 . 11 and G1 = 1g1,g 12.  gin] with g* 0 and gl e GF(2k) and the gt's

are all distinct, for 1 < j 5 n. Thus by (3)

% % X4
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G(D) =Go+ G ID (16b)

where D is the unit delay operator.

From the above definition of a dual-k CC, it is known in [51 or can be verified that the minimum

distance of the code is dmia = (2n-1) and the free distance is dfre = 2n. Hence if no more than t

symbol errors occur in the first 2 codeword frames and 2t+1 S drai, = 2n-I or t <_ n-i, then those

errors which occur in the first frame can be corrected. In other words, the dual-k CC is a t-error-per-

blocklength-correcting CC, where t = [(dmi-1)/2] and [x] denotes the greatest integer less than x.

Note that blocklength is equal to n (m+1) = nL symbols where m is the memory and L is the con-

straint length.

The following sections present the algebraic syndrome decoding algorithm for the rate 1/2 and

1/3 dual-k convolutional codes.

V. ALGEBRAIC SYNDROME DECODING OF A RATE 1/2, DUAL-K CC

Let the Galois field GF(2 3) be generated by the 3rd degree irreducible polynomial

p(x) = X3+x 2+1, over GF(2). If a is a root ofp(x), then at, at2, oX3 = 1+0 2 , 4 = 1+cX+0X2, X5 
- 1+0-a,

O6.... a 2 , c7 = 1 and 0 are the eight elements of GF(23). The generating matrix of type (16b) for a

rate 1/2, dual-3 CC is given by

G(D) =[l,a ] + fl,a 2lD =[l+a1 D,I+a2D 1.

where a1 I a2, a 2 ; 0. In Eq. (15), let

v(D) viD' (17)
1-0

_€(D) [e I [ i,e2i ]D' (18) "

and

* *',.
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_ ) [ZIi,Z2iID' (19)
i-0

A substitution of Eqs. (17), (18), (19) into Eq. (15) yields

, [eji,e 2 ]D'= vD-G(D) + Z [IZ 2i] D '
i=O i=O i=O

or

[ej,,e 2JD' = [v + aIvi 1 , vi + a2vi-D' I+ [zi,z 2i]D' (20)
i=0 i=0 i=0

Thus,

v i + a =vi-- z1i + e1 i (21)

v i + a2Vi = z 2i + e2i (22)

Solve vi and vi_ 1 in terms of zli, z 2i, e1 i and e2i, one obtains,

Vi_ 1 = (a I + a 2)-l[(zli + z2 i) + (eli + e2i)] (23)

Vi = (a I + a 2)-t[(a2zi + alZ2 i) + (a 2ei + ate2 i)] (24)

where vi-I and vi constitute the current message symbol and next message symbol in the input infor-

mation sequence.

In the above notation, the following results can be established.

Result 1:

Let the error correcting capacity be t = 1 for one blocklength CCs. Then,

(i) Vi-I = (a, + a 2)-l(zli + Z2i) iff (eii,e2i) = (0,0).

(ii) If no error occurs at the PLh frame time, i.e., (e i,e2i) = (0,0), then

Vi_1 = (aI + a 2)-(zli + z2i) (25)

vi= (aI + a 2)-'[(1+a 2)z1i + (I+a1 )z 2iI + (aI + a 2)-'[z1 i + z 2i] (26)

*" " '*,',-"" '*'..-' . """" , -"' """", -"" .""' , -*"*"""' ."' ,'."'"'." ' ;, "."*" "." " "''- ," .",",","."•"U" '
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Proof:

(i) For part (i), if (eli,e2i) (0,0), then by (23) and (24), one obtains vi 1 = (zli + z )(al + a2)-

and

Vi = (a I + a 2)-(a 2 zli + a z2j)

= (a I + a 2)-'[(l+a2)z1 i + zli + (l+a 1 )z2i + z ],

= (a1 + a 2)-l[(l+a2)z1 i + (l+a )zli]I + (a1 + a 2)-l[z1i + z 2i]

If vi_1 = (a I + a2)-'(zli + z 2i) then by (25) eli + e2i = 0. Now since t = 1, eli and e2i cannot

be simultaneously both nonzero. In other words, (eli,e2i) must be one of the following forms:
'

(0,0), (0,a), (a,0) where a e GF(2k). Therefore, it can be readily verified that (eli,e2i) = (0,0).

(ii) If (eli,e 2i) = (0,0) then from part (i), it is known that vi_ 1 = (a1 + a 2)-(zli + z2j) and hence the

result.

Note that from (i) of Result 1, it follows that if (eI i,e .) = (0,0) then

Vi = Vi_.1 + (a I + a 2)-'[(l+a2)z1i + (l+a)z 2i]

Based on Result 1, a flow chart for the decoding algorithm is shown in Figure 1.

Example 1:
'a

A specific rate 1/2 dual-3 CC with G(D) = (I+D ,l+czD) is given, i.e. a = 1, a2 = a.

Solving vi and vi-I in Eqs. (21) and (22), one has

vi-. =(z i) 2 z 2 i) 2 + (eli + e 2i)c 2

Vi =Zli +(zli +2z 2 02 + (eli + e 2i)a2 + eli

Then from Result 1:

Vi 1 = (Z 1i + Z2i)a
2 iff (eli + e2i) = (0,0)

* *~~ a ~ a~ a1
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and if no error occurs at the Pth frame time, then

Vi = (z1 i + Z2i)a 2

Vi Z i + (z ii + Z,)a
2

The detailed steps of the algorithm shown by the flow chart now are described and explained as

follows:

Assume initially that the message symbol is 0.

Step 0: Set i = -1, x - true and A = 0 (the initial message symbol 0).

Step 1" Set i = i+1, compute S = (zIi + z)2ia 2.

Step 2: If the previous time had an error, i.e., x = false then since only one error is allowed

for two continuous time frames, the current time frame must be error free. Therefore,

by Result 1, part (ii), get vi-I = S = (zIi + Z2i)a 2 and get vi = (zli + S). Next set x

-true and A = vi . Go to Step 1.

If the previous time frame had no error, i.e., x = true, then go to Step 3 to check if

any error occurs at the current time frame i or not.

Step 3: IfS =A then by Result 1, part (i), [eIi,e2i] I -0,01.
.5

Thus vi can be computed by Eq. (24) vi =zj i +S; setA =v i andx ;time. Go to 'S

Step 1.

If S * A again by Result 1, part (i), an error occurs at time frame i; set x = false. Go

to Step 1.

To illustrate the decoding algorithm works, let the D-transform of input sequence be

X(D)= I+cxD. Then

y(D) =x(D)G(D)- [1,11 + [a5 ,0lD + ta,a]D2 "

a. ~ a ~ -a
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Next let the error sequence be e(D) = [0,a] + [1,01D . So that z(D) = y(D) + e(D) = [l'ot ]

1 5,01D + [a',a 2D2 is the received sequence. The decoding algorithm can be checked as follows:

Step 0: Set i= -1, x = true and A =0.

Step I. Set i = i+1 = 0 and S = (ZIo + z 20)a2 - (l+aS)cX 2 = ot3 .

Step 2" Initially it is assumed that there is no error. Hence go to Step 3.
"4

Step 3: Since S = a 3 * 0 = A, one concludes that an error occurred at frame time 0. Set x = '

false. Go to Step 1.

Step 1" i = i+1 = 1 and S = (zII + z21)a2 = (a5 +O)a2 = 1.

Step 2: Since an error occurred at the previous time frame (x = false), set V_1 = v0 = S =

and v, = v =z +S = a5 + 1 =a, x = true, A = vi = v1 = x and go to Step 1.

Step 1: i = i+1 = 2 and S = (z12 + z22 )a2  = (a5 + a2)a 2 = 6.

Step 2. Since x = true, go to Step 3.

Step 3. Since a6  a = A, set x - false to indicate an error occurred at time frame 2. Go to

Step 1.

Step I. i = i+1 = 3 and S = (z13 + z2 3)a2 = (0,O)a 2 = 0.

Step 2: Since x =false, vi 1 =v 2 =S =0 and V3 =S + Z 13 =0.

Finally, v(D) = vo + vct + v2a 2 + v 3a3 + 1 + aD which equals the original information

sequence.

A program to simulate this algorithm has been written in Pascal. The LSI design of decoder
',.

using this algorithm is given in Appendix A. This type of decoding algorithm is very efficient and
1'

.e,

". .".""..""'-"j .f"/' L.' "' .'.""- "-....,.'2'-,..o-..2. .,,.2 ... '.'..,e ,''eio- '..'.' '.'2.''. ¢2'., e2
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much simpler than Viterbi decoding. In fact, less than 30 gates are needed to implement this decoder.

VI. ALGEBRAIC SYNDROME DECODING OF A RATE 1/3, DUAL-K, CC

Let G(D) = (1+aD,1+a 2D,1+a 3D) where ot e GF(23) is a root ofp(x) as defined in Section

V. Again in Eq. (15), let

_(D) viD' (27)

z(D ) = Zli,Z2i,z3i]D i  (28)
i-O

(D ) =.,[e i,e2i,e3i]Oi  (29)
i=O

Substituting these equations and G (D) into Eq. (15) and equating the coefficients yield,

alvi I + vi = zli + e1i (30)

a2vi_ 1 + v i = z 2i + e2i (31)

a3vi I + Vi =Z3i + e3i (32)

The solutions for vi-1 and vi are given as follows:

For viI one has the two solutions,

Vi I = (Zli + z3i + eli + e3i)(a I + a 3)- ' (33a)

Vi-1 = (Zri + Z2i +eii + e2j)(aI + a2)- ' (33b)

For vi one also has the solutions

v,= alvi_1 + zli + eli (34a)

v,= a 2vi I + Z2i + e2i (34b)

where vi- t is given in either (33a) or (33b). By (33a) and (33b), one obtains

[(aI + a 2)- 1 + (aI + a 3)-](zi + e j) + (a, + a 2)-(z 2i + e 2i)

= (a, + a3)-l(z 3 i + e 3i) (35)

% %!



16-
p.

Result 2:

Let a rate 1/3, dual-3 CC be generated by G(D)= (l+aD,l+a2D,I+a3D). Assume that no

more than r = 2 errors tan occur in one constraint length, WH (eli,e 2i,e3i) +

WH (e l,i],e 2,i+l,e 3,i+]) .2, where WH denotes Hamming weight.

(i) If [e1 i,e2i,e3 ] = [0,0,01, then

[(a 1 + a2)-I + (aI + a 3)-l ]zi + (aI + a 2)-'z 2i = (aI + a3)-'z3  (36)

Vi_ 1 = (Z1i + z 2 )(a I + a2)71  (37)

Vi = vi_ 1 + z ii (38)

(ii) If [(aI + a2)-
1 + (aI + a3)-i]z 1i + (aI + a 2)-z2i = (aI + a3)-lz 3i, then at least one

error occurs at frame i, i.e., WH(el 1 ,e2i,e 3i) 2t 1.

(iii) If [(a, + a2)-i + (a, + a3)-l]zli + (a1 + a 2)-'z2i - (a, + a 3)YZ3i, then either 0 or 2

errors occur at frame i, i.e., WH(el 1 ,e2i,e 3 ) 0 or 2.

(iv)

vi 1 = (z li + z 2i)(a I + a 2 ) -  (39)

and

[(aI + a 2)
- 1 + (a I + a3)-I]z1 i + (a I + a 2 )-z 2 i= (a1 + a 3 )-z 31  (40)

iff [ej,,e2i,e 3 ] = 10,0,01.

(v) Suppose [(a1 + a 2)
- 1 + (a + a3)-lz 1 i + (aI + a2)-Iz2i (aI + a3)-z 3, and

WH(ej,,ezi,e ) = 1.

(a) If a1+0a2 a1 +o (41

(a f 2Z2i + z 3i(a I + a 2)vi_ O, (41)
a 2 + a 3  a2 + a 3

a, + a3 a, + a 2
then e =z i + a2 + 2 3 i O, e 2 , =e 3 =0.a2 + 03 a2 + 3
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a + a 2  a__+a 2__

(b) If + z'i + a z3  + (a I + a2)vi 1  0 then e1 i =0.
a 2 + a 3  a 2 + a 3

Proof:

(i) Follows immediately from Eqs. (33), (34) and (35).

(ii) Follows immediately from part (i).
a-

(iii) If [(a1 + a2
- + (a1 + a3)1-zli + (a1 + a 2)-z 2i = (aI + a 3)z 3i, then by (35) one

obtains

[(aI + a2)- 1 + (a I + a3)-Ilei + (aI + a 2)-le 2i = (a1 + a 3)-e 3; (42)

Now if WH(eIi,e2i,e3 i) = I, then it can be readily verified that (42) cannot be satisfied. Moreover,

since for dual-k of rate 1/3 CC, the correcting capacity t = 2, one concludes that WH(el,,e 2i,e3i) = 0

or 2.

(iv) If vi 1 = (zli + z2i)(a I + a 2)- 1 and [(a I + a 2)- 1 + (a I + a 3)-l]z1 i + (a1 + a2)-z = ..

(a I + a3)-lz 3i, then by (33), (35), (38) and (40), one obtains

e1i + e = 0 (43)

[(a I + a 2 )- 1 + (a I + a 3)-i]e 1 i + (a I + a 2)-e 2j = (a I + a 3)-e 3 i (44) "

A substitution of (43) into (44) gives e1i = e3i. This implies e1i = e2i= e3i. Since t 2, three

errors are not allowed. Thus, (e1j,e-2 ,e3i) = (0,0,0). The converse follows immediately from part (i).

(v) 4

(a): A substitution of (41) into (33b) yields
I-

(a1 + a 2)(a2 + a 3)-I(z 2i + z 3i) - zli + z 2 i + e1 i + ei(45)

Solving (45) and (35), one obtains

'S

,T .,, C~, r,.i'. .. *'.'...,, .... , . ....... .. a .. ,,. . . 5.,. .... ... % .. ,-.-....... ...-..... ...... .... ....- .-
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e21 = e3  (46)

a, + a 3  a, + a 2el Z 1l, + - Z 2i +Z3i + e3i (47)a 2 + a 3  a 2 + a 3

Since WH(eli,e2i,e 3i) = 1, e2i and e3i cannot both be nonzero thus, e2i = e3i = 0 and

a,+a3 al+a 2el, =Z1 1 + - 2/ + - Z3i *0.
a2 + a 3  a2 + a 3

(v)

(b): Eliminating v, in Eqs. (30) and (31) gives

e1 i + e2i + Z1 i + z 2 i + a I + a 2 vi 1 = 0. (48)

Similarly, eliminating vI in Eqs. (31) and (32) gives

eli + e 3 i + Zli + Z3 + a I + a 3vi ! =0. (49)

Adding Eqs. (48) and (49) yields

e 2 i + 3ei + z2. + z 3j + a 2 + a3vi_ = 0

or

a, + a 2  a, + a 2(e2i + e3j) - (z2i + z 3j) +aI + a 2vi_ 1 0.
a2 + a 3  a 2 + a3

Thus e2, e 3i. Since WH(eli,e 2i,e 3&) = 1, one obtains e1, = 0.

The flow chart for decoding a rate 1/3, dual-3 CC is shown in Fig. 2. Initially, i -1 and

A = 0, where i is the index for both received and information sequence and A is used to store the pre-

viously corrected message symbol. For any two contiguous time frames (time frame i and i+1), four

Boolean variables 80LN [j 1, 1 5 j !_ 4 are defined as follows:

If [(a, + a 2) -1 + (a1 + a 3 )-l]zli + (a, + a 2)-z2i = (a, + a 3 )z3, then BOLN[lI = true,

else BOLN [1 - false.

'I

,¢'iv iv .o o- . ,, . . . ,- - ' . * . .- .o .-. -. . - - . • . .. * . . .**. ' . .. .. . . .,
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:START

I*INDEX OF THE RECIlVED
10*-1 AND INFORMATION SEQU.ENCES

A *PREVIOUS CORRET MESSAGE
SYMBOL, INIT IAL VALUE IS 0

BOIN[i]= ((a 1 o~I + (a,+a3 1] Z +(a +a 02
= (1 03))

STEP?- BOLN [1] (Zo+21+o ~] 1 *1 a o
Z2 (a +a)Z 3 i)

BOLN [2] ([(()1 + 1+(0 9 = Ii~ (0C V1  1

ST P 3- Z--- - -- -- -

NOTN 303] z[]za

BOOLN [2]

al +02 Z1 + -!+! Z3,(a, V

Figure3

$TV 3\. - - - - -



-20-

If [(a + a2) - + (a1 +a 3 )J-]Z ~ + (a I +a 2 )-l z2,,+1 = (a + a 3)z 3.,+1 then BOLN 121

= true, else BOLN [2] = false.

If (z1 i + z I)(aI + e2)-' = A, then BOLN [3] true, else BOLN 131 false.

a__a_ al+a 2
If z2i + a,= (a I + a 2)vi_ 1 then BOLN [41 = true, else BOL'V 141

a 2 + a3  a2 + a 3

false.

Four cases are discussed according to the Boolean values of BOLN [1] and BOLN [2].

Case 1: BOLN[1] and BOLN[21 are both true.

By Result 2, part (iii), there are 0 or two errors for both time frames i and i+1, i.e..

W;I(eI,,e 2,e3i) = 0 or 2, W (el,+1 ,e 2 ,i+,e 3 j, 1) = 0 or 2.

If BOLN[3] is true, then by Result 2, part (iv), (eli,e2i,e 3i) = (0,0,0), and thus by Result 2, part

(i), v, can be determined by Eq. (38).

If BOLN[3] is false, then by Result 2, part (iv), WH(elj,e 2i,e 3i) > 1, and since

Wjj(eh1 ,e2 ,e3i) = 0 or 2, as discussed, one concludes that WH(elh,e2,,e3,) = 2. Thus

Wjj(e l.,+l,e2),, ,e3,l) = (0,0,0) for the reason that no more than 2 errors can occur in two contiguous

time frames. Therefore vi can be determined by Eq. (37) vi = (z 1,j~ + z2,i+l)(aI + a2 )- 1.

Case 2: BOLN 11 false, BOLN [21 true.

By Result 2, part (ii), WH(eI,,e 2 ,e3,) > 1. By Result 2, part (iii), WH(ej,+,e 2,,, 1,e 3.,,1 ) 0 or

2. Also by the assumption that WH(eI,+I,e 2,i+l,e 3 i+0) + W, 1 (ej~j+1 ,e2,+j+,e3 i 1) 5 2. Thus,

Wj'(e,.,+1 ,e2 .,+1 ,e3 .,.) = 0. i.e. (e1 ,+1 ,e21 +1 ,e3j+ (0,0,0), and so vi again can be determined b,

Eq (37).

01

Case 3: BOLN I true, BOLN [21 false.

I5.
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By Result 2, part (iii), WH (elie 2,e3 ) = 0 or 2. By Result 2, part (ii),

Wji(e ij+je 2.i+I,e 3.i+) - 1. Also by the assumption that WH(ejj,e2,e 3i) + WH(e Ij+I,e2.t+I,e 3 .,+t) < 2.

Thus, WH(eli,e2i,e3i) = 0 and so by Result 2, part (i), vi can be computed by Eq. (38).

Case 4: BOLN [II false, BOLN [21 false.

By Result 2, part (ii), W1 (e 1 ,e ,e 3i) I and W (ej,+l,e2,i+,e3,+0)< 1 and since

WH(eli,e2i,e 3 i) + WH(elj,+l,e 2,+I,e 3,+l) < 2, it follows that WH(eli,e 2i,e 3i) = 1 and

WH(el+l,e2,+I,e3,i+l) = 1. Therefore by Result 2, part (v), if BOLN [4] is true then e2i = 0, other-

wise e1 i = 0. And so vi can be computed by Eq. (34b) or (34a) depending on e2i = 0 or e1i = 0.

After vi is determined, then vi is substituted for A and the recursive process is repeated to deter-

mine vi+,. Finally the entire estimated information sequence is obtained. The estimated information

sequence is exactly the original input information sequence as long as there is no more than 2 errors

for each constraint length.

To illustrate the above algorithm, an example is given as follows:

Example 2:

Consider a special 1/2 rate dual-3 CC with G(D) = (I+D,I+oLD,I+d 6D), i.e., A1 = 1, A 2 = (X,

A3 = a6 then the four Boolean functions are as follows:

Bolu[1 = ( I4z i + a6z2i = z 3 )

Bolu [2] = (ct4z 1,i + CX6Zi+l = Z3,i+l)

Bolu(31 = ((z/ + z2i)a 2 = A )

Bolu [4] = (a 3Zli + 0C3Z3 i = Vi_10X5)

Let the input be x(D) = I + aXD 2. Then the encoder output is

y(D) = x(D)G(D) = [1,1,1] + [l,t,a6lD + [cct,alD 2 4- [t, ct2 ,1lD 3
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Next let e(D) - [a5,0,01 + [0,0,ccD + [a, 2,01D 3, so that the received sequence z(D) = [czl.I

+ [1,a,cc2lD + [asCtaID 2 + [0,0,11D 3.

The decoding algorithm then can be checked as follows:

Step O. i = -1, A = 0.

Step 1: i = i+1 = 0.

Step 2. C Z10 + ct 6z20 = (3 1 = z30 BOLN[ I is false.

+ 6Z 2= a6  a = Z 31 - BOLN (21 is false.

a 3Z20 + a 3 oz = 0 = v 1 -- BOLN [41 is true.

Step3:ejo=z1 o+a 2z2o+a 3z2o - o 5, vo=zio+v-l+ejo , o + 0 + a5=l and

A = v 0 = 1.

Step ." i = i+1 = 1.

Step 2.' a4Z1 + a 6z 2 1 = 6  2 = 31 - BOLN[I] is false.

cc4z 1 2 + a6z22 a = Z32- BOLJ [21 is true.

Step 3: vI = (z1 , i + z2,i+z )a2 = (z t +z2 ) 2 = 0, A + v= 0.

Step I = i +l =2.

Step2: a4 Z1 2 + Z6 Z22 = a= Z32  BOLN [I is true.

a4Z13 + c6Z23 = 0 * 1 = Z33 -+ BOLN[21 is false.

Step 3 v 2 = vI + z 12 =0+ X= ot_

Step ]. i = i+1 = 3.

Step 2. a.4z 1 3 + 6z 23 = 0 1 1 = Z33 -4 BOLN[II is false.

cE z14 + e z 24 = 0 = z34 BOLN [21 is true.

p

N - -~ \ ~-.p
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Step 3. v3 = (z1 4 + z2 ,4)a 2 = 0, A = v 3 =0.

Step I: i = i+1 = 4.

Step 2: a4Z 14 + a06 Z24 = 0 = Z 34" BOLN[I1I is true.

a4z15 + a6z2 5 = 0 = Z5-* BOLN [2] is true.

(Z14 + z 24 )a 2 - 0 = A - BOLN [3] is true.

Step 3: v4 = v3 + z 14 =0.

Finally, vo = 1, v 1 =0, v 2 =a, v 3 =0 and v 4=Oor v(D)= I + XD2, whichis the same as the

original input sequence. A simulation program for the algorithm was written in Pascal. An LSI design

of the algorithm is given in Appendix B.

The implementation of this decoder is much simpler than Viterbi decoding, thus, this decoder can

be applied to telephony and HF radio, where a moderate error correction is desired at a relatively low

cost, see [7].

V. CONCLUSION

In this report, algebraic syndrome decoders of both rate 1/2 and 1/3, dual-k, nonsystematic con-

volution codes are developed in detail, including an efficient method for finding the corrected message

sequence. This is achieved without the necessity of storing a number of states or paths in a constraint

length of the error trellis diagram. Currently, the problem of algebraic syndrome decoding of a rate

l/n. dual-k, CCs for n > 3 is being investigated. Finally, a single VLSI chip with CMOS technology

for the rate 1/2, dual-2 algebraic syndrome decoder is being developed.

,

-a ~,0
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